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Numbers of Nature 

Masterclass: 

Extra Background Information 

Sequences 

A sequence, in mathematics, is a list of objects, like numbers, that follow a 

particular pattern. The individual elements in a sequence are called terms. A 

sequence may contain the same number twice, and it doesn’t always have to 

carry on getting bigger or smaller. The order of the terms in the sequence is 

important, and the sequence can be finite (finish after a certain number of 

terms) or go on forever. Sequences are useful in a number of mathematical 

disciplines for studying patterns, shapes, and other mathematical structures. 

 

In this session, we discuss sequences of numbers that do go on forever, and 

what happens if as it goes on it gets closer and closer to a single value. This is 

called the limit of the sequence, and is a very important concept in 

mathematics.  

Limits of sequences 

In the session, we give a few examples of sequences, and discuss what their 

limits might be. 

 

Some sequences approach the limit from above, such as the sequence of 

numbers 1/n, where n = 1, 2, 3, 4, 5… 

 

1 ½ ⅓ ¼ ⅕ … 

 

These numbers are always getting smaller, and as the size of n increases they 

will get closer and closer to 0. The limit of this sequence is 0. 

 

Some sequences approach their limit from below, by always increasing (a simple 

example would be -1/n, for n = 1, 2, 3, 4, 5…), while others change from bigger 

to smaller, but always getting closer to the limit. For example, the sequence (-

1)n/n for n = 1, 2, 3, 4, 5... would give the numbers: 

 

-1 ½ -⅓ ¼ -⅕ … 

 

This is called an alternating sequence, because it alternates between positive 

and negative values. 
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If you already have a sequence with a given limit, it’s possible to create a 

sequence for another limit, by adding the same amount to each term. For 

example, the sequence 5 + (1/n), for n = 1, 2, 3, 4, 5… has a limit of 5. 

 

In the workshop, we play a game called How Far Do You Have to Go? This 

involves choosing a sequence with a limit, giving your friend a small (positive) 

number, and challenging them to work out how far along the sequence you need 

to go before they are closer to the limit than that number. If the limit of the 

sequence is 0, and the sequence is approaching 0 from above, this is the same 

as working out how far along the sequence you need to go before the term is 

smaller than your given small number. If the limit isn’t 0, or it’s approaching it in 

a different way, you’ll need to check the difference between the term of the 

sequence and the limit, and go far enough so that the difference is smaller. 

 

Mathematicians often study sequences of numbers like this, and this game is a 

very useful way to check whether a sequence has a limit. This idea is called 

convergence, and the formal definition says: 

 

A sequence, whose terms are written S1, S2 and so on, converges to a 

given limit c if for any small number you name (in formal definitions this 

number is often given the symbol epsilon, written ε), there is a number N 

such that the difference between the Nth term of the sequence and c is 

less than ε, which we can write as: 

|SN - c| < ε 

and that this difference will continue to be less than ε for all the terms 

after that. 

 

The vertical lines (pipes) in the inequality above indicate that if SN - c is negative 

(as we don’t know if the sequence is approaching from above, or below, or 

alternating, so it might be that SN - c is less than zero) then you ignore the 

minus sign - it’s called the absolute difference between the two numbers. 

 

In the examples given, some of the sequences we discuss have a very simple 

rule for the terms of the sequence - they’re called the constant sequence, and 

one of the examples in the workshop is the sequence 2, 2, 2, 2, 2, … which is 

always 2. The limit of this sequence is 2, and with this definition of convergence 

you can see that the difference between each term and the limit is always 0, 

which will be less than any small number you can name. 

 

There are many sequences which don’t get closer and closer to a limit. For 

example, the sequence n2, for n = 1, 2, 3, 4, 5… will get bigger each time, but 

the terms are also getting further apart, and not getting closer to any one 

number. This kind of sequence doesn’t have a limit, and we say it diverges. 
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You could argue that if you look at the terms of the sequence, the numbers are 

getting closer to the number 100. This works for the first 10 terms, but once you 

get beyond that, they will no longer be getting closer to 100. This is why our 

definition of a sequence converging needs you to find a number N for which all 

the terms beyond that are closer to the limit. 

 

Some people might suggest that if a sequence continues to get bigger, it has a 

limit at infinity. This makes sense, but mathematically it’s not a correct 

statement. A limit has to be a number, and infinity is not a number! 

Fibonacci Numbers 

One sequence that’s studied in this workshop is the Fibonacci sequence - this is 

defined using the rule that each entry in the sequence is the sum of the two 

previous entries. This means to define the sequence completely, the first two 

terms must be given, and in the workshop we use 1, 1 as the first two terms. 

 

Fibonacci numbers occur in many places - as can be seen in the Rabbits and 

Sequences workshop, calculating the number of ways to arrange 1p and 2p coins 

produces Fibonacci numbers, as does a simple model for rabbit populations. 

They’re also connected to Pascal’s triangle. They’re so common in mathematics, 

a whole journal called Fibonacci Quarterly is dedicated to new discoveries 

connected to Fibonacci numbers. They also crop up in divisibility algorithms, 

project planning methods, search algorithms, and generating random numbers. 

 

The Fibonacci sequence is named after Leonardo de 

Fibonacci, who lived approximately 1175 – 1250, and 

was sometimes called Leonardo of Pisa. While Fibonacci 

wasn’t the first person to discover this sequence, he was 

the first to introduce the idea to Western mathematics, 

in his book in 1202, which was called Liber Abaci (‘Book 

of Calculation’). In this book he also popularised the 

system of Hindu-Arabic numerals we use today, 

including the use of the digit 0 and place value in 

decimals. 

The Golden Ratio 

The Fibonacci sequence doesn’t converge to a limit, as its terms keep getting 

bigger and further apart. But it is possible to create a sequence from the 

Fibonacci sequence which does have a limit, by taking successive pairs of terms 

and dividing the smaller by the larger. 
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Dividing one number by another like this gives a ratio, and using the terms of 

the Fibonacci sequence we can create a long sequence of ratios, and observe 

that this new sequence we’ve created does converge, and it has a limit. 

 

N Nth Fibonacci number (N+1)th Fibonacci 

number 

(N+1)th divided by Nth 

1 1 1 1/1 = 1 

2 1 2 2/1 = 2 

3 2 3 3/2 = 1.5 

4 3 5 5/3 = 1.66… 

5 5 8 8/5 = 1.6 

6 8 13 13/8 = 1.625 

7 13 21 21/13 = 1.615… 

8 21 34 34/21 = 1.619… 

9 34 55 55/34 = 1.617… 

 

The limit of this sequence is called the Golden Ratio, written using the symbol Φ 

(phi) which has a value of around 1.618. In the table, it can be seen that the 

sequence of ratios approaches this limit from above and below - the number 

moves up and down either side of Φ, and gets closer each time. 

 

Φ can also be written as (√5+1)/2, and it has various interesting properties, as discussed in 

the workshop: 

- The Golden Ratio is the unique number for which 1/Φ + 1 = Φ 

- If you divide a line into two parts such that the ratio of the small part to 

the large part is the same as the ratio of the larger part to the whole line, 

it will be in the Golden ratio 

- The Golden ratio is present in the proportions of a five-pointed star - in 

particular, one which has been constructed using lines which join the 

points of a pentagon. Some five-pointed stars have wider points, and it 

will not work unless the line running from a point to the body of the star 

runs straight across and joins straight on to the opposite line 

- The Golden Ratio allows you to construct a rhombic triacontahedron: 

this is a shape with 30 faces, each of which is a rhombus whose diagonals 

(the two distances across the rhombus from corner to corner) are in the 

Golden ratio. This kind of rhombus is sometimes also called a Golden 

Rhombus. 
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Since the ratio between one mile and one kilometre is close to the Golden ratio, 

this means that if you know a distance in miles and want to find it in kilometres, 

and your number of miles is in the Fibonacci sequence, the number of kilometres 

will be roughly the next Fibonacci number - for example, 3 miles is around 5km, 

and 8 miles is around 13km. 

The Golden Angle 

In the workshop, we consider what the Golden ratio represents as an angle. 

Dividing a whole circle (360 degrees) into a number of parts gives a proportion 

of a circle - for example, dividing by 6 gives 6 equal parts, each measuring 60 

degrees. If we wanted a Golden angle, we could divide 360 by our Golden ratio, 

and doing so gives 360/1.618… = 222.5 degrees (approximately). This, and its 

complementary angle 360 - 222.5 = 137.5 degrees, are both special angles 

related to the Golden ratio. 

 

It makes sense to calculate the smaller angle, as 222.5 degrees is an angle 

larger than 180 degrees (this is called a reflex angle) so working with its 

complementary angle is easier, and is the same as measuring an angle of 222.5 

degrees but going round the other way. 

 

This angle is found in the way petals are spaced around certain types of flowers, 

and seeds are positioned inside flower heads. 

The Golden Spiral 

Another activity in the workshop 

involves constructing a Golden 

Spiral, also called a Fibonacci 

spiral. This is made using square 

pieces each of which has a quarter 

of a circle inside, and the length of 

the side of the square is a 

Fibonacci number. 

 

These squares can be assembled 

into a spiral, such that the curves all match up and create a continuous curve 

around the shape. This spiral can continue to be built forever, since each 

Fibonacci number is the sum of the previous two, and the squares are arranged 

such that the next square will always line up with the edges of the next two 

smallest squares - so in the diagram here, another square could be added across 

the bottom, then another on the right, and so on. 
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If you build up the Fibonacci spiral from the smallest pieces upwards, the outside 

rectangle of the spiral at each stage has sides which are two consecutive 

Fibonacci numbers, starting with 2 by 1, then 3 by 2, then 5 by 3 and so on. 

These are exactly the pairs from our table above, and if you calculate the ratio 

between them, this specifies the shape of the rectangle. The ratio between the 

sides of the rectangle is getting closer and closer to the Golden ratio, and if you 

made a rectangle with exactly this ratio it’s called a Golden Rectangle. This 

rectangle is sometimes used in design - for example, standard sized credit cards 

and business cards are often a Golden rectangle. 

 

Because of the way the Golden rectangle is defined, it has the property that if 

you cut a square off one end of 

the rectangle, the piece left 

behind is also a Golden 

rectangle. This means if you 

place one rectangle horizontally 

against one oriented vertically, 

the diagonal line between the 

corners of the horizontal 

rectangle will continue and hit 

the corner of the vertical 

rectangle, as that top part is in 

the same ratio. 

Numbers in Nature 

Fibonacci numbers occur in nature - as seen in the workshop, counting the 

number of spirals on a pine cone or sunflower seed head will result in a Fibonacci 

number. 

 

This is because the spacing of the seeds is optimal when it’s least likely to 

overlap with itself, so the Golden ratio is useful in making the gap between 

seeds least likely to be a fraction of a whole turn - if the seeds were placed ¼ 

turn apart, every fourth seed would overlap, but with seeds 1/Φ of a turn apart 

(our Golden angle), it will be a long time before a seed lands in the same place, 

and this means the number of turns will be a Fibonacci number. 

 

Of course, every plant is different, and natural variation means this sometimes 

doesn’t work - some plants grow in different circumstances, or their growth 

could be interrupted or changed by physical interference, random mutations and 

weather conditions. 
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