Choose your lottery numbers

On your bit of paper write the 6 numbers you would choose if you were playing the lottery...

The rules:

- There are 59 numbers (integers from 1 to 59) to choose from.
- You choose 6 with the aim of matching the 6 numbers that are drawn in the lottery, to win the jackpot.

Royal Institution Primary Maths Masterclasses

Off the shelf Masterclass:
Get Lucky!

Probability and the Lottery.

rigb.org
@Ri_Science

The Royal Institution

Our vision is:

A world where everyone is inspired to think more deeply about science and its place in our lives.

Royal Institution activities

- Online videos \& activity resources
- National education programmes

- Membership
- London-based:
- Talks and shows
- Holiday workshops
- Family fun days
- Faraday Museum

Sce Royal Institution Science Lives Here

The CHRISTMAS LECTURES

The CHRISTMAS LECTURES are the Ri's most famous activity and are televised on the BBC. The first maths lectures by Prof. Sir Christopher Zeeman in 1978 started off the Masterclass programme!

Christmas Lecturers include Michael Faraday, David Attenborough, Carl Sagan, Richard Dawkins, Alison Woollard, Saiful Islam \& Alice Roberts

Royal Institution videos

- CHRISTMAS LECTURES - on the Ri website

The language of life
Sophie Scott takes us on a journey hrough one of the fundamentals of human and animal life - the unstoppable
urge to communicate, in the 2017
CHRISTMAS LECTURES

Supercharged: fuelling the future

Royal Institution videos

- CHRISTMAS LECTURES - on the Ri website
- Ri on YouTube - experiments, videos \& talks for all ages

The languag
Sophie Scott ta
Popular Experiments PLAY ALL
Sophie Scott ta
through one of human and anii urge to commul
CHRISTMAS L

Watch and learn the science behind some of the most popular demonstrations we have done here at the Ri.

CHRISTMAS L

Saiful Islam lea
through the invi

Royal Institution videos

- CHRISTMAS LECTURES - on the Ri website
- Ri on YouTube - experiments, videos \& talks for all ages
- ExpeRimental - science experiments at home

Get Lucky! Probability and the Lottery

One Coin Flip

Two Coin Flips

You could have...

What other combinations could you have?

Two Coin Flips

$\mathbf{R i} \begin{aligned} & \text { The Royal Institution } \\ & \text { Science Lives Here }\end{aligned}$

Three Coin Flips

$\mathbf{R i}$ The Royal Institution
Masterclass network

Is it worth playing the lottery?

What do we need to find out?

Combinations

Mini Lottery

Players choose two numbers from 1,2,3,4,5
If you choose the two numbers that are chosen from the machine, then you win the jackpot!
a) Write out ALL the possible pairs of numbers you can choose. Order doesn't matter in the lottery!
b) Finished? Write out ALL the possible groups of three numbers you can choose from the five.

Mini Lottery

Write out ALL the possible pairs of numbers you can choose!

$$
\begin{aligned}
& { }_{5} C_{2}=10 \\
& { }_{4} C_{2}=6
\end{aligned}
$$

Mini Lottery

Three numbers chosen from 1,2,3,4,5
Write out ALL the possible groups of three numbers you can choose from the five

How many lottery numbers you choose.

Pascal's Triangle

Yanghui Triange

Pascal's Triangle

Pascal's Triangle

Credit: Nonenmac at English Wikipedia

Mini Lottery

Players choose two numbers from 1,2,3,4,5,6,7

1) How many different groups of numbers are there that you could choose?

The Royal Institution
Science Lives Here

Lottery - how many ways?

Interactive Pascal's Triangle

$\mathbf{R i}$ The Royal Institution Science Lives Here

Lottery - how many ways?

Two cells above 59 C 6 in Pascal's triangle...

458211640475358
 $$
45057474
$$

So is it worth it?

Lottery - how many ways?

$$
\begin{aligned}
& =45,057,474 \\
& =1 \mathrm{in} 45,057,474 \\
& =\frac{1}{45,057,474} \\
& =0.00000002219
\end{aligned}
$$

What does that mean...?

You need to play $\mathbf{4 5}, \mathbf{0 5 7}, 474$ times to expect to win once

1. How many years does it take to play that many times, if you buy a ticket a week?
2. How many lifetimes is that?
3. If $£ 2,000,000$ is the average jackpot winnings per person, how much money do you expect to lose in total (if you could play for that many lifetimes)?

Finished?
Can you think of another way of calculating the probability of winning the jackpot?

What does that mean...?

1. How many years does it take to play that many times, if you buy a ticket a week?

45,057,474 / 52 = 866,489.88
2. How many lifetimes is that?

866,489.88 / $74=11709.32$
3. If $£ 2,000,000$ is the average jackpot winnings per person, how much money do you expect to lose in total (if you could play for that many lifetimes)?
$45,057,474 \times 2-2,000,000=88,114,948$

Extension Material: Expected value of a lottery ticket.

Extension activity: Is it worth it?

Game 1

Cost 3 sweets to play
Win 10 sweets if you draw blue.
Win nothing if you draw yellow
Is it worth playing?

Is it worth it?

Game 2

Cost 3 sweets to play
Win 5 sweets if you draw blue.
Win nothing if you draw yellow
Is it worth playing?

Is it worth it?

Game 3

Cost 3 sweets to play

Win 10 sweets if you draw blue.

Win nothing if you draw yellow
Is it worth playing?

Expected value

$$
\begin{aligned}
\text { Expected value } & =\text { probability win } \times \text { prize if you win } \\
& =0.5 \times 10 \\
& =5
\end{aligned}
$$

Game 1
Cost 3 sweets to play
Win 10 sweets if you draw blue.
Win nothing if you draw yellow
Is it worth playing?

$\mathbf{R i}$	The Royal Institution Science Lives Here
Masterclass network	

Expected value

$$
\begin{aligned}
\text { Expected value } & =\text { probability win } \times \text { prize if you win } \\
& =0.5 \times 5 \\
& =2.5
\end{aligned}
$$

Game 2
Cost 3 sweets to play
Win 5 sweets if you draw blue.
Win nothing if you draw yellow
Is it worth playing?

$\mathbf{R i}$	The Royal Institution Science Lives Here
Masterclass network	

Expected value

Expected value $=$ probability win \times prize if you win

$$
\begin{aligned}
& =0.2 \times 10 \\
& =2
\end{aligned}
$$

Game 3

Cost 3 sweets to play
Win 10 sweets if you draw blue.
Win nothing if you draw yellow
Is it worth playing?

$\mathbf{R i} \mathbf{l}$
Masterclass network

Expected value

Expected value =

probability you win \mathbf{X} prize if you win $+$

 probability that you lose \mathbf{X} prize if you lose$$
E(x)=P_{w} \times X_{w}+P_{L} \times X_{L}
$$

$\mathbf{R i}$
Masterclass network

Expected value

$$
\begin{aligned}
& E(x)=P_{w} \times X_{w}+P_{L} \times X_{L} \\
& E(x)=0.5 \times 10+0.5 \times 0=5
\end{aligned}
$$

Game 1
Cost 3 sweets to play
Win 10 sweets if you draw blue.
Win nothing if you draw yellow
Is it worth playing?

$\mathbf{R i}$	The Royal Institution Science Lives Here
Masterclass network	

Expected value of a lottery ticket

$$
E(x)=P_{1} X_{1}+P_{2} X_{2}+P_{2} X_{3}+\ldots . . P_{n} X_{n}
$$

Number of numbers matched	Outcomes (X) (Average prize money per person)	Probability (p)	Prize multiplied by probability
6	$£ 2,000,000$		
5 and bonus	$£ 50,000$		
5	$£ 1000$		
4	$£ 100$		
3	$£ 25$		
	TOTAL:		

Expected value of a lottery ticket

$$
E(x)=P_{1} X_{1}+P_{2} X_{2}+P_{2} X_{3}+\ldots . P_{n} X_{n}
$$

Number of numbers matched	Outcomes (X) (Average prize money per person)	Probability (p)	Prize multiplied by probability
6	$£ 2,000,000$	0.00000002219	
5 and bonus	$£ 50,000$		
5	$£ 1000$		
4	$£ 100$		
3	$£ 25$		
	TOTAL:		

Expected value of a lottery ticket

$$
E(x)=P_{1} X_{1}+P_{2} X_{2}+P_{2} X_{3}+\ldots . P_{n} X_{n}
$$

Number of numbers matched	Outcomes (X) (Average prize money per person)	Probability (p)	Prize multiplied by probability
6	$£ 2,000,000$	0.00000002219	
5 and bonus	$£ 50,000$	0.00000013316	
5	$£ 1000$	0.00000069244	
4	$£ 100$	0.00045874742	
3	$£ 25$	0.01039827488	
	TOTAL:		

Expected value of a lottery ticket

$$
E(x)=P_{1} X_{1}+P_{2} X_{2}+P_{2} X_{3}+\ldots . P_{n} X_{n}
$$

Number of numbers matched	Outcomes (X) (Average prize money per person)	Probability (p)	Prize multiplied by probability
6	$£ 2,000,000$	0.00000002219	$£ 0.044$
b and bonus	$£ 50,000$	0.00000013316	$£ 0.007$
5	$£ 1000$	0.0000069244	$£ 0.007$
4	$£ 100$	0.00045874742	$£ 0.046$
3	$£ 25$	0.01039827488	$£ 0.260$
	TOTAL:		

Expected value of a lottery ticket

$$
E(x)=P_{1} X_{1}+P_{2} X_{2}+P_{2} X_{3}+\ldots . P_{n} X_{n}
$$

Number of numbers matched	Outcomes (X) (Average prize money per person)	Probability (p)	Prize multiplied by probability
6	$£ 2,000,000$	0.00000002219	$£ 0.044$
b and bonus	$£ 50,000$	0.00000013316	$£ 0.007$
5	$£ 1000$	0.0000069244	$£ 0.007$
4	$£ 100$	0.00045874742	$£ 0.046$
3	$£ 25$	0.01039827488	$£ 0.260$
	TOTAL:		$£ \mathbf{0 . 3 6}$

On average, for every $£ 2$ spent on a ticket -
maths says you should expect to
get 36 p back.
So
is it
worth it?

Expected value of a lottery ticket

There's never been a better day to play the lottery, mathematically speaking

Buying a ticket for today's national lottery draw makes mathematical sense for the first time in its history.

The jackpot - which will be around $£ 58 \mathrm{~m}$ - is the largest since the lottery began in 1994. But that's not what makes today's draw unusually interesting.

Today's draw is noteworthy because the rule changes made to the lottery last year have resulted in an anomalous situation where the "expected value" of each $£ 2$ ticket - that is, the amount you can expect to win per ticket on average - is more than $£ 2$.

January 2016
Credit: Alex Bellos, The Guardian

Lets play the Lottery!

https：／／www．lottery．co．uk／lotto／number－generator

ickTime Player File Edit View Window Hel

MAIN MENU		
LO1	O MENU	v
哯	Lotto	
5	Results	
	Join Syndicate	
\＃	Checker	
\geqslant	Number Generator	
Hhl	Statistics	
笰	Lotto Raffile	
䀎	Lotto HotPlicks	
	News	

TERMINATOR E＂ DONLINE SLロT

Which numbers would you choose?

$$
\begin{aligned}
& \text { A) } 7,17,26,31,49,56 \\
& \text { B) } 1,2,3,4,5,6 \\
& \text { C) } 3,7,11,14,27,30 \\
& \text { D) } 36,37,39,40,52,53
\end{aligned}
$$

How frequently Ri Masterclass students chose each lottery number

Popular numbers

23 March 2016, Lottery Results

14	No. of winners	Prize per winner
No. of matches	0	$£ 0$
Match 6	6	$£ 10,016$
Match $5+$ bonus	4,082	$£ 15$
Match 5	7,879	$£ 51$
Match 4	114,232	$£ 25$

We hope you have enjoyed exploring the maths of the National Lottery with us!

What questions do you have?
Any unanswered questions can be written down and emailed to "Ask the Ri Masterclass Team" using this email masterclasses@ri.ac.uk

We don't know all the answers instantly, but we will find out and get back to you before the next Masterclass.

Any comments you have about what you enjoyed or what you'd like to do more of can be written on the post-it note and handed in.

Go further: combinations and thinking systematically

Small Change https://nrich.maths.org/754

Stage: $3 \star \star \star$
In how many ways can a pound (value 100 pence) be changed into some combination of $1,2,5,10,20$ and 50 pence coins? Remember, the aim is not just to get the answer but to find a good method and to explain it well.

Greetings https://nrich.maths.org/615

Stage: 3 太
There are 30 students in a class and it is found that in any subset of 4 students from the class each student has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How many such students are there?

The Royal Institution
Science Lives Here

Go further: Pascal's Triangle

Investigating Pascal's Triangle https://nrich.maths.org/5593

Stage: 2 and $3 \star \star$

I think that it's time to look at Pascal's Triangle afresh. So, let's see what happens when we turn it around in a special way.
So we start with the layout as usual, turn it anticlockwise 45 degrees and then take off the top line of ones.

Royal Institution Primary Maths Masterclasses

Thank you!

