2. The rate of change
 - Rate of chemical steps
 - Collision theory
 - Energy requirement
 - Dependence on concentrations and temperature
 - Rate constants. Order of reaction.

3. The activated complex
 - The transition state.
 - Rate as an approach to equilibrium.
 - Equilibrium and transition state, except for physics and chemistry.

4. Light and chemical change
 - Light as energy quanta.
 - Photoelectric effect.
 - Photoemission.
 - Radiation and the effects of X-rays, etc.

5. Very fast reactions and kinetics
 - Chemistry reaction on a very fast.
 - Techniques and methods.

6. Changes of state
 - Phase changes.
 - Solid, liquid, gas.
 - Fusion and evaporation.
 - Melting and boiling.

7. Molecular dynamics
 - Statics and dynamics of molecules.
 - Analogy with mechanics.
 - Phase changes.
 - Equations of state.
 - Chemical equilibrium.

8. Molecular interactions
 - Molecular forces.
 - Electronic and intermolecular forces.

9. The second law of thermodynamics
 - The second law.
 - Entropy and the arrow of time.

10. Approach to equilibrium
 - Equilibrium of state of a system.
 - Concept of equilibrium.
 - Chemical equilibrium.

11. Chain reactions
 - Chain reaction.
 - Nuclear reaction.
 - Explosion.
MOLECULAR DYNAMICS

1. Static and Dynamic Worlds
 Shape and change of shape
 Analogy with mechanics
 Physical and chemical changes - examples
 Direction and rate of change
 Equilibrium as end of change
 Mechanical equilibrium
 Atoms, molecules and their motion

2. Molecules in Motion
 Nature of heat - form of energy - First Law
 Kinetic energy
 Random motion of molecules.
 Internal motion
 Vibration and rotation
 Collisions - converting collisions

3. Entropy and the Second Law
 Idea of disorder
 Measuring disorder
 The Second Law
 Entropy
 The Relation to heat and energy
 Work from change

4. Approach to equilibrium
 Equilibrium as state of greatest disorder
 Examples of physical and chemical equilibrium.
 The concept of free energy.
 The arrow of time.

5. Changes of state - Patterns of Physical Change
 Physical change of molecular order.
 Why water freezes and ice melts.

6. Patterns of chemical change
 Change in steps
 Addition
 Decomposition
 Chain reactions
 Polymerisation
 Explosion

7. The Rate of change
 Rate of elementary steps
 Collision theory
 Energy requirements
 Dependence on concentration and temperature
 Rate constants
 Order of reaction.

8. The Activation Barrier
 The transition state
 Rates as an approach to equilibrium into transition state.
 Examples from physics and chemistry.

9. Light and Chemical Change
 Light as energy quanta.
 Excited electrons in molecules
 Examples of photoreactions
 Photosynthesis
 Other radiations and their effects.
 X and γ rays
 Electrons
10. **Very fast reactions and biochemical change**

- Elementary reactions are normally fast
- Experimental study - new techniques and methods of atoms
- Unstable species - free particles
- Excited states
- Lifetimes
- Fast biochemical reactions
- Photobiology and radiation biology